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Advancing Land-Cover Classification in Croatia: Implementation 
of a Pilot Project for ARKOD+ and CROLIS LU  

Initial Layer Creation 
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Abstract: The pilot study was conducted in collaboration 
with the Paying Agency for Agriculture, Fisheries and Rural 
Development (PAAFRD), with implementation led by 
Sinergise Solutions d.o.o. and KING ICT d.o.o. as executors. 
This pilot initiative was integral for fulfilling objectives 
outlined in the LIFE CROLIS project, with PAAFRD as a key 
partner. The primary aim of the pilot project was to analyse 
training data and evaluate methodologies for automating 
land cover classification within the Republic of Croatia 
using Sentinel-2 satellite imagery. Additionally, the project 
aimed to generate an initial vectorized spatial dataset of 
agricultural land parcels (ARKOD+) by application of a 
delineation algorithm on aerial imagery. Over a period of 
10 months, starting on May 23, 2023, the project consisted 
of multiple phases organized into work packages, 
including, among others: analysis of input data and spatial 
frameworks, developing and applying algorithms for land-
cover classification and field delineation, evaluating 
results, preparing future methodology recommendations 
for field data collection/validation, and creating a GIS 
viewer. Additionally, a comparison was conducted 
between the use of PlanetScope Fusion and Sentinel-2 
imagery for calculating markers identifying agricultural 
use in the Koprivničko-križevačka region. This paper 
presents the framework, methodologies, and outcomes of 
this pilot project, shedding light on the feasibility and 
effectiveness of utilizing satellite data for automated land 
classification, with implications for land management and 
policy development. 
Keywords: CROLIS; ARKOD+; agriculture; land cover 
classification; automated delineation. 

1 Introduction 
The LIFE CROLIS project deals with the development of a 
harmonised data model for land monitoring in the 
Republic of Croatia with the aim of developing and 
establishing the first multi-level and multi-purpose land 
monitoring system. The establishment of the CROLIS 
system will enable better climate policy planning 
(mitigation and adaptation) in various sectors at the level 
of the Republic of Croatia. Additionally, the application of 
data from CROLIS will enable more precise reporting and 
calculation of greenhouse gas emissions and sinks from 
the LULUCF sector (land use, land-use conversion and 
forestry) and the CROLIS system will provide a stable basis 
for planning and implementing climate change mitigation 
activities through reducing emissions and increasing 
greenhouse gas sinks in the LULUCF sector. 

With new EU legislation, including the adopted Regulation 
(EU) 2023/839 of the European Parliament and of the 
Council, which simplified the reporting and compliance 
rules and set out the targets of the Member States for 2030 
on improving monitoring, reporting, and tracking of 
progress, the establishment of the Land Monitoring System 
in Croatia becomes an obligation. 
One of the most important effects of the establishment of 
CROLIS is the precise reporting of greenhouse gas sinks in 
the LULUCF sector. According to the CROLIS project, the 
entire land area of the Republic of Croatia will be included 
in a harmonised land monitoring information system and, 
as a result, new information will be obtained about the 
connection between Croatian land management practices 
and emission factors. This will help to introduce land 
management practices with lower greenhouse gas 
emissions, and ultimately will help achieve reductions in 
greenhouse gas emissions. 
Since the ARKOD (LPIS) system includes only agricultural 
areas whose owners submit a request for payment of 
incentives, for now less than 50% of the total agricultural 
areas in the Republic of Croatia are registered in ARKOD. 
Aher the establishment of CROLIS, all agricultural areas will 
be determined and officially registered, which will enable 
better planning of climate change mitigation measures. 

2 Materials and methods 

2.1 Training data 
Training data was collected and analysed for 7 Land 
Use/Land Cover (LU/LC) classes: forest, water, build-up 
area, permanent grasslands, arable land, permanent 
crops, and karst pastures. Validation was based on analysis 
of NDVI (Normalized Difference Vegetation Index) signals 
for 2020 and 2022 and manual visual control based on 
aerial imagery. Data was provided by the State Geodetic 
Administration,  
Croatian State Forest Enterprise, and PAAFRD, and was 
iteratively selected based on iteration results. The initial 
dataset was filtered by area and shape with the goal of 
increasing homogeneity in the LU/LC sample. Objects 
narrower than 10m were excluded from the sample. 
Special attention was given to the training data for 
agricultural parcels, as it was crucial not only for CROLIS, 
but also for training the model for ARKOD+, where borders 
of each agricultural parcel had to follow visible parcel 
borders on aerial imagery. For this case, PAAFRD controls  
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data was used. Out of 22,410 agricultural parcels, 5,375 
(24%) were marked as acceptable. Additionally, 587 parcels 
were added aher editing of quality assurance control made 
by the executor making a total of 5,962 samples distributed 
over Croatia. Non-agricultural samples were used as 
“negative” training data. 
 
For validation purposes, collaboration with the Croatian 
State Forest Enterprise was established, and with the usage 
of drones, aerial imagery was created and used to validate 
land cover changes on a small sample. 

2.2 Processing 
2.2.1 Land-use / land-cover classification 
We compared the machine-learning (pixel-based 
LightGBM) approach, as showcased in blog-post series 
(Lubej 2018) with the object-based model. 
We first tested LU/LC prediction per pixel, which resulted in 
substantial salt-and-pepper noise. Sieving was applied to 
smooth the prediction, but this led to artefacts, primarily 
seen on linear features. This issue was partly addressed by 
applying coregistration to the temporal stack of images, 
but the results still contained patches of obvious 
misclassifications. As an alternative, an object-based 
approach was attempted. We applied Felzenszwalb 
Segmentation (Felzenszwalb and Huttenlocher 2004) to 
the maxNDVI image for the whole year (separately for 2020 
and 2022), segmenting areas into objects. NDVI signals of 
pixels within objects were averaged, and prediction was 
run for each object. The results proved more suitable for 
comparison  
between years, and therefore this method was selected for 
the pilot (Figure 1). 
In the next iteration, segmentation into objects was done 
by considering quarterly values of NDVI, Normalized 
Difference Water Index and Normalized Difference Built-up 
Index to reduce influence of changes within objects during 
the year. 
Classification for the whole country was made in 2 
iterations. In the first iteration, it was identified that the 
model could benefit from additional samples from 
agricultural areas, which were then added in the second 
iteration. Although we saw significant improvements in the 

second iteration when comparing confusion matrices, 
interpretation should be done with caution, as we 
observed that the performance on the validation set may 
not fully reflect the predictive capabilities across the entire 
dataset. This discrepancy is likely attributable to the high 
quality ("clean") nature of the reference data, which 
comprises samples exclusively representing a single land 
cover type.  
It is noteworthy that our analysis is conducted by using 
Sentinel-2 imagery, where significant signal mixing can 
occur. Notably, a single 10m x 10m pixel ohen captures data 
from multiple land cover types simultaneously, influenced 
by numerous factors that determine the predominant 
signal within that pixel. 
Land cover changes were detected by intersecting LU/LC 
classes from 2020 and 2022 and retaining results where 
predicted classes changed. Changes were retained only if 
pseudo-probability for the predicted group in each year 

was significant (above 0.98), and change was larger than 4 
Sentinel-2 pixels (Figure 2). 
2.2.2 Field delineation of agricultural parcels 
The eo-grow framework (Batič et al. 2023) was used to 
tackle the issues of processing scalability, by enabling 
coordination of clusters to run the EO workflows over large 
areas.  
Delineation of agricultural fields was done on normalized 
aerial imagery with 0.5m resolution made in 2022 and 
2021, which included spectral bands for red (R), green (G), 
blue (B), and near-infrared (NIR). The area of the country 

 
Figure 1. Comparison of true color (leP), pixel-based classification (middle) and segmented objects classification (right) around 

city of Ivanec for 2022. 

 
Figure 2. LU/LC changes between 2020 and 2022. First 

iteration leP, second iteration on the right. 
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was divided into 230,000 tiles with dimensions 1100x1100 
pixels and an overlap of 100 pixels.  
We rasterized the positive polygons (training data for 
agricultural areas) to create extent and boundary masks. As 
there was more negative reference data (in terms of total 
area), to avoid overrepresentation of the negative 
reference pixels, we computed the number of "negative" 
and "positive" pixels in each of the tiles and then down-
sampled the negative pixels in a way that the ratio between 
the two is roughly equalized.  
Different experiments were done: training models with 
different datasets (changing ratio of negative vs positive 
samples), changing learning rate (from 0.001 to 0.0001), 
precision (from 16 to 32), and epochs (from 75 to 150).  
The evaluation of the models was done on 1200 locations 
distributed across the country. The best model achieved 
IoU 0.82 and accuracy 0.93 on the evaluation dataset 
(Figure 3). 
The model was run on the entirety of Croatia, and results 
were simplified in postprocessing, where holes and parcels 
with an area of less than 100m2 removed. 
2.2.3 Trend of agricultural activities on delineated 

parcels 
On an area of 24x24km within Koprivničko-križevačka 
region, Sentinel-2 and PlanetScope Fusion NDVI signals 
were extracted for time range 2018–2023 for each parcel. 
Bare-soil and mowing markers were then calculated to 
monitor agricultural trends. The marker records an 
observation on the signal, and contains both the nature of 
the observation and the time it was manifested on the 
parcel (Devos et al. 2021). Out of 24,145 parcels, 27% 
(6,491) were monitored only with PlanetScope Fusion due 
to Sentinel’s resolution limitation. 97 parcels were too 
small to contain even a single PlanetScope Fusion pixel 
(3x3m), and therefore were not analysed. 17,557 (73%) 
parcels had signals from both sources. A commercial 
solution, provided by executor, Sinergise, was used for 
marker calculation (Sinergise 2024).  

Marker analysis revealed a negative trend in the number of 
mowed parcels. On both Sentinel-2 and PlanetScope 
Fusion, the number of mowed parcels decreased. On 
average, approximately 8,000 of the 17,557 parcels were 
mowed in 2018, decreasing to approximately 5,174–7,863 
mowed parcels in 2023, depending on the source. 

Bare-soil marker did not show significant trend changes 
with around 8,000–11,000 parcels having at least 1 bare-
soil observation through the year. 
Differences in marker results were noticed between 
PlanetScope Fusion and Sentinel-2 on parcels with 
heterogenous crops. The PlanetScope Fusion bare-soil 
marker was more sensitive to partial changes within 
parcels. 

3 Results 
Field delineation resulted in 2,848,790 agricultural parcels 
with a total area of 1,822,550 ha. 
It was noticeable that higher accuracy results were 
achieved in continental parts of Croatia. In coastal areas 
and islands, initial results would require manual editing (as 
expected) to precisely follow borders of agricultural 
parcels.  
Karst pasture borders represent a challenge, as this kind of 
land use ohen does not have borders that are clearly visible 
from aerial imagery. Karst pastures are ohen declared over 
forested or bare-soil areas with sparse vegetation, with no 
clear contrast between two neighbouring fields - making it 
hard to determine field boundaries from aerial imagery 
alone. 
Preliminary LU/LC classification results proved that 
cautiously-selected training data can significantly improve 
results, and with an established framework and 
methodology, iterations could be calculated, ohen 
providing a fast feedback loop important for improvement 
of ground truth. 
Lastly, the monitoring of land-use changes and 
maintenance of the ARKOD+ layer (delineated parcels) is 
possible with markers which could be used to prove 
agricultural use of land, or as a potential change-detector 
(homogeneity, forest probability etc.). However, the 10m 
resolution of Sentinel-2 creates an issue for small or narrow 
parcels which don’t contain at least 1 whole Sentinel-2 
pixel. 

4 Discussion 
The area of delineated parcels is smaller than the PAAFRD 
estimate of 2,695,037 ha (Narodne novine 2013), likely due 
to results for karst pastures, for which visible boundaries 
are hard or even impossible to precisely detect with the 
field delineation model. Results seem to be mainly suitable 
for arable land, with room for improvement for permanent 

 
Figure 3. Training the delineation model. From leP to right; aerial imagery true color, aerial imagery NIR, predicted  

parcel extent, predicted parcel boundary. 
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crops and grasslands. A larger and more diverse sample of 
training data is needed to improve the quality, especially 
over coastal areas. The need for larger and more diverse 
sample data is also true for LU/LC classification. Although 
initial results look promising, it seems there is still room for 
improvement in segregation between arable land and 
permanent crops in coastal areas where we did not have 
significant distribution of training data. 
As for agricultural monitoring purposes, PlanetScope 
Fusion showcased as advantageous compared to Sentinel-
2 on small and narrow parcels. On larger parcels, lower 
revisit time did not significantly improve results. As 
changes are expected to occur on delineated parcels over 
the years, it seems sensible to monitor parcels 
homogeneity as an indicator of potential parcel border 
change. 

5 Conclusions 
The pilot study resulted in important guidelines for the 
collection and preparation of training data, which proved 
highly significant. Preparation of the training data in 
advance will accelerate the process of carrying out 
necessary activities to reach the objectives of the CROLIS 
project. This acceleration may ultimately support the 
establishment of an information system to realize these 
goals. 
Also, the results that were obtained through the delivery of 
the pilot project determined the guidelines surrounding 
the methodology that will be applied during the 

establishment of the future information system. The initial 
results of ARKOD + parcels through the automatic 
classification method confirm significant progress in the 
creation of LU agricultural land, and for the purposes of 
achieving the goals derived from the CROLIS project. 
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